Taula de continguts:
- Pas 1: Vind Een Laser
- Pas 2: Verbindt De Polen Van Je Photon
- Pas 3: Verbind De LDR
- Pas 4: Verbind De Weerstand
- Pas 5: programador fotó
- Pas 6: Comenceu Van De Opstelling
- Pas 7: Opstelling: Photon Houder
- Pas 8: Opstelling: Laser Statief
- Pas 9: opstelling: rails horitzontals
- Pas 10: Comenceu a provar
Vídeo: Sensor Verdampings S&N: 10 passos (amb imatges)
2024 Autora: John Day | [email protected]. Última modificació: 2024-01-30 08:16
En deze instructable maken we een verdampingsensor die concentratieverschillen meet in een met kleurstof gekleurde bak water, door middel van een laser. Als er minder water in de bak zit (door verdamping) is de concentratie kleurstof hoger en het water dus minder doorschijnend. Dit verschil in de doorlatendheid van licht (en dus ook de laser die door de bak water gaat) kan de sensor meten en dus ook de orde grote waarin de concentratie verandert.
Pas 1: Vind Een Laser
Een laser gaat door een bak geschenen worden die gekleurd is met kleurstof. De laser die hiervoor nodig is hoeft niet enorm sterk te zijn, een laser voor katten bijvoorbeeld volstaat.
Pas 2: Verbindt De Polen Van Je Photon
Als je Photon is opgestart en verbonden kunnen we de polen verbinden met de zijkant van je Breadboard. Dit maakt het ons later makkelijker met de Photon te werken. Allereerst verbinden we de 3v3 (3volt) port van de Photon, met een draad, met de plus kolom aan de zijkant van het Breadboard. Daarna verbinden we de GND (ground) port van de Photon met de min kolom aan de zijkant van je Breadboard. Zie ook afb.
Pas 3: Verbind De LDR
Als je de polen van je Photon hebt verbonden aan je Breadboard kunnen we de LDR aan de Photon verbinden zodat we uiteindelijk lichtintensiteit kunnen meten, aangezien de LDR een weerstand is die gevoelig is voor licht. Wat we ten eerste moeten doen is 1 kant van de LDR aan een van de analoge voltmeters van de Photon verbinden, dit zijn de A ports aan de zijkant van de Photon. Wij gebruiken hier A4. Dan verbinden we de andere kant van de LDR aan de plus kolom van het Breadboard. Zie ook de afb.
Pas 4: Verbind De Weerstand
Nu als laatste moeten we de stroomkring compleet maken door een weerstand aan de Photon te verbinden. Dit is een weerstand van 20 ohm. Allereerst verbinden we 1 kant van de weerstand met de A4 port van de Photon, als je een andere analoge port hebt gebruikt bij de vorige stap moet je uiteraard nu ook de weerstand met die port verbinden. Hierna verbinden we de andere kant van de weerstand met de min kolom van het Breadboard. Zie ook de afb. Pas wel op dat de weerstand en de LDR elkaar niet raken!
Pas 5: programador fotó
Nu moet je Photon nog geprogrammeerd worden zodat hij daadwerkelijk wat terug stuurt. Je gaat naar build.particle.io en opent daar een nieuwe app zodat je een code kan schrijven. Allereerst zeg je welke waarde je Photon moet aflezen dat is in ons geval pin A4. Dan zeg je met delaytime om de hoeveel seconden hij een meting moet doen (1000 = 1 seg). Als je dat gedaan hebt kan je je sensor nog een naam geven. Hierna open je een setup en sluit je hem weer. Dan open je een loop. Hierin benoem je een integer die de analogpin moet aflezen. Dat laat je hem weer publishen in je loop, voordat je deze sluit. Zie ook afbeelding als voorbeeld (let hierbij niet op wat achter een dubbele slash staat).
Als je code klaar is druk je op flash (bliksemschicht) en dan stuurt je laptop de code naar je Photon en als het goed is begint deze ook te meten. Deze waarden can je zien op console.particle.io.
Pas 6: Comenceu Van De Opstelling
Nu onze Photon klaar is kunnen we beginnen aan de opstelling van de sensor. Aangezien we met een laser werken die precies op de LDR moet vallen luistert de positionering van de onderdelen heel nauw.
Benodigdheden voor of opstelling:
- 1 plankje van 9x9 cm (1) - 1 plankje van 11 cm breed en 15 cm hoog (2) - 2 plankjes van de zelfde dikte als de voorgaande, van 1 cm breed in 15 cm hoog (3) - 2 dikkere plankjes van 2 cm raça i 15 cm hoog (4) - 2 dikkere plankjes van 4x4 (5)
- 1 plankje van 10 cm breed in 15 cm hoog (6) - 2 plankjes even dik als het vorige plankje van 2 cm breed in 25 cm hoog (7) - 1 dikker plankje van 3 cm breed in 25 cm hoog (8)
- 1 grote plank van ongeveer 25 cm brees en 1 m lang (9) - 1 blok van 3, 5 cm hoog in even breens als je laser (10) - 2 dikkere plankjes 1 cm breed in even lang als je laser (11) - 2 dunne plankjes van een halve cm brees en 2 keer zo lang als de breve van je laser (12)
- Voldoende karton
De onderdelen zijn allemaal genummerd en komen later terug in de beschrijvingen. Aangeraden wordt om als je de onderdelen op maat hebt gezaagd te nummeren zoals hierboven gedaan is.
Pas 7: Opstelling: Photon Houder
Omdat het heel moeilijk is te voorspellen hoe de laser van te voren op de LDR zal vallen zorgen we ervoor dat de positie van de LDR in de opstelling zelf nog aangepast kan worden. Dit doen we door een plankje vaar de LDR op zit, plankje 1, te laten bewegen tussen houten '' rails ''. Allereerst pakken we plank 2 en bevestigen daar plankjes 5 boven op elkaar op, aan de onderkant van plankje 2. Dan bevestigen we aan de andere kant van plankje 2, plankjes 3 aan beide kanten van plankje 2. Daarna kunnen plankjes 4 weer op plankjes 3 worden bevestigd zodat er aan beide kanten een gleuf ontstaat. tussen die gleuven kan je dan plankje 1 glijden. Het is belangrijk dat plankje 1 soepel maar toch met enige weerstand omhoog en omlaag beweegd. Després del pla 1, podreu consultar la taula de pa amb el fotó amb la recerca de paraules. Zie ook de afbeeldingen.
Pas 8: Opstelling: Laser Statief
Ook de laser moet goed stil staan in de opstelling. Dit betekent dat de laser moet worden vastgezet, maar dat de laser ook zo moet aan gaan dat hij niet trilt als je de knop ingedrukt houdt.
Plaats eerst het blok (10) aan een uiterste van de grote plank (9). Leg de laser in het midden van het blok met de knop omhoog en plaats aan beide kanten van de laser de plankjes 11. Haal de laser tussen de plankjes vandaan en leg de plankjes 12 over dwars op de plankjes 11. 1 plankje 12 aan de achterkant en 1 plankje in het midden waar normaal de aan-knop van de laser onder zit. Boor nu aan beide kanten van de plankjes 12 een gat voor een schroef, dwars door 12, 11 en in blok 10. leg de laser weer tussen plankjes 11 en schroef het achterste plankje 12 erop vast.
Nu zit de laser vast op het blok. boor met een boor die dikker is dan de schroefdraad van de schroef die je gaat gebruiken een gat door beide (nu nog kleinere) gaten van het plankje 12 die niet is vast gezet. Als je dit hebt gedaan kan je het plankje 12 vastschroeven op plankjes 11. Als de schroeven strak zijn aangedraaid zie je als het goed is de laser aan gaan, maar als de schroeven losser worden gedraaid gaat hij uit. Tenzij je zelf op het bovenste plankje drukt. Zie ook de afbeeldingen.
Pas 9: opstelling: rails horitzontals
Omdat het laserlicht soms door verschillende concentraties of in het water sowieso kan breken moeten we ook zorgen dat we de LDR horizontaal kunnen positioneren zodat we optimale metingen hebben. Dit doen we door de houder van de Photon van stap zes, door middel van de plankjes (5), te bevestigen aan plankje 6. Dat plankje laten we weer langs houten rails lopen. Eerst bevestigen we 1 plankje 7 op ongeveer 30 cm afstand van blok 10, op plank 9. Dit moet loodrecht op de lengte van plank 9 bevestigd worden. Daarna bevestigen we het andere plankje 7 10 cm achter het eerste plankje, tevens loodrecht. Als laatste bevestigen plankje 8 bovenop het achterste plankje 7 waardoor er weer een houten rail ontstaat. Zie ook de afbeeldingen.
Nu is je opstelling klaar. De houten rails staan je nu toe verschillende onderdelen makkelijk van de opstelling op en af te schuiven zodat het makkelijk kan worden vervoerd.
Pas 10: Comenceu a provar
Nu is de sensor gebouwd. Om te beginnen met meten heb je een bak water nodig die je op de opstelling tussen de laser en de photon zet. De bak moet rechte wanden hebben zodat het licht zo min mogelijk breekt en moet goed doorzichtig zijn. Dan voeg je een kleurstof toe. Voor een goed resultaat wordt kaliumpermanganaat gebruikt worden. Verander dan de concentraties in de bak door er bijvoorbeeld water aan toe te voegen en je hebt je sensor. Zorg er wel voor dat de laser altijd op de LDR schijnt.
Voor een beter resultsat can je de photon met LDR nog afschermen met karton zoals op de tweede afbeelding.
Recomanat:
Sensor de respiració de bricolatge amb Arduino (sensor d'estirament de punt conductor): 7 passos (amb imatges)
Sensor de respiració de bricolatge amb Arduino (sensor d’estirament de punt conductor): aquest sensor de bricolatge adoptarà la forma d’un sensor d’estirament de punt conductor. S'embolicarà al voltant del pit / estómac i, quan el pit / l'estómac s'expandeixi i es contraurà, el sensor i, en conseqüència, les dades d'entrada que s'alimenten a l'Arduino. Tan
Com desmuntar un ordinador amb passos i imatges senzills: 13 passos (amb imatges)
Com desmuntar un ordinador amb passos i imatges senzills: és una instrucció sobre com desmuntar un ordinador. La majoria dels components bàsics són modulars i fàcilment eliminables. Tanmateix, és important que us organitzeu al respecte. Això us ajudarà a evitar la pèrdua de peces i també a fer el muntatge
Tira LED activada amb sensor de moviment amb temporitzador: 6 passos (amb imatges)
Tira LED activada per sensor de moviment amb temporitzador: Hola a tothom! Estic molt content d’escriure ara un altre instructiu. Aquest projecte es va produir quan un company instructable (?!) (David @dducic) em va contactar fa uns mesos demanant ajuda al disseny. Així que aquí teniu les especificacions originals: & q
SENSOR SUHU DENGAN LCD DAN LED (fabricació de sensor de temperatura amb LCD i LED): 6 passos (amb imatges)
SENSOR SUHU DENGAN LCD DAN LED (Making Sensor Temperature With LCD and LED): hai, saya Devi Rivaldi mahasiswa UNIVERSITAS NUSA PUTRA from Indonesia, di sini saya akan berbagi cara membuat sensor suhu menggunakan Arduino dengan Output ke LCD dan LED. Ini adalah pembaca suhu dengan desain saya sendiri, dengan sensor ini anda
Llum de carrer intel·ligent amb sensor Ir amb Arduino: 4 passos (amb imatges)
Llum de carrer intel·ligent amb sensor Ir amb Arduino: SUBSCRIU-vos al meu canal per a més projectes. Aquest projecte tracta d’il·luminació de carrer intel·ligent, el llum de carrer s’encendrà mentre el vehicle hi passa. el vehicle, cada sensor IR controla