Taula de continguts:

Seguiment de moviment mitjançant MPU-6000 i Arduino Nano: 4 passos
Seguiment de moviment mitjançant MPU-6000 i Arduino Nano: 4 passos

Vídeo: Seguiment de moviment mitjançant MPU-6000 i Arduino Nano: 4 passos

Vídeo: Seguiment de moviment mitjançant MPU-6000 i Arduino Nano: 4 passos
Vídeo: Трекинг Объектов в Capcut На Компьютере // Motion Tracking Capcut 2024, Juliol
Anonim
Image
Image

MPU-6000 és un sensor de seguiment de moviment de 6 eixos que té incrustat un acceleròmetre de 3 eixos i un giroscopi de 3 eixos. Aquest sensor és capaç de fer un seguiment eficient de la posició i ubicació exactes d’un objecte en el pla tridimensional. Es pot utilitzar en sistemes que requereixen una anàlisi de posició amb la màxima precisió.

En aquest tutorial s'ha il·lustrat la interfície del mòdul de sensor MPU-6000 amb arduino nano. Per llegir els valors de l’acceleració i l’angle de rotació, hem utilitzat arduino nano amb un adaptador I2c, que fa que la connexió al mòdul del sensor sigui més fàcil i fiable.

Pas 1: maquinari necessari:

Maquinari necessari
Maquinari necessari
Maquinari necessari
Maquinari necessari
Maquinari necessari
Maquinari necessari

Els materials que necessitem per assolir el nostre objectiu inclouen els components de maquinari següents:

1. MPU-6000

2. Arduino Nano

3. Cable I2C

4. Escut I2C per arduino nano

Pas 2: connexió de maquinari:

Connexió de maquinari
Connexió de maquinari
Connexió de maquinari
Connexió de maquinari

La secció de connexió de maquinari explica bàsicament les connexions de cablejat necessàries entre el sensor i l'arduino nano. Garantir connexions correctes és la necessitat bàsica mentre es treballa en qualsevol sistema per a la sortida desitjada. Per tant, les connexions necessàries són les següents:

El MPU-6000 funcionarà sobre I2C. Aquí teniu un exemple de diagrama de cablejat, que demostra com connectar cada interfície del sensor.

Fora de la caixa, el tauler està configurat per a una interfície I2C, per tant, us recomanem que utilitzeu aquesta connexió si no sou agnòstic.

Tot el que necessiteu són quatre cables. Només es necessiten quatre connexions pins Vcc, Gnd, SCL i SDA i es connecten amb l'ajut del cable I2C.

Aquestes connexions es mostren a les imatges anteriors.

Pas 3: codi per al seguiment de moviment:

Codi per al seguiment de moviment
Codi per al seguiment de moviment

Comencem ara amb el codi arduino.

Mentre s’utilitza el mòdul de sensor amb l’arduino, incloem la biblioteca Wire.h. La biblioteca "Wire" conté les funcions que faciliten la comunicació i2c entre el sensor i la placa arduino.

A continuació es proporciona tot el codi arduino per a la comoditat de l'usuari:

#incloure

// L’adreça MPU-6000 I2C és 0x68 (104)

#define Addr 0x68

configuració nul·la ()

{

// Inicialitzar la comunicació I2C com a Mestre

Wire.begin ();

// Inicialitzar la comunicació en sèrie, establir la velocitat de transmissió = 9600

Serial.begin (9600);

// Inicieu la transmissió I2C

Wire.beginTransmission (Addr);

// Seleccioneu el registre de configuració del giroscopi

Wire.write (0x1B);

// Rang d’escala completa = 2000 dps

Wire.write (0x18);

// Atura la transmissió I2C

Wire.endTransmission ();

// Inicieu la transmissió I2C

Wire.beginTransmission (Addr);

// Seleccioneu el registre de configuració de l’acceleròmetre

Wire.write (0x1C);

// Rang d’escala completa = +/- 16 g

Wire.write (0x18);

// Atura la transmissió I2C

Wire.endTransmission ();

// Inicieu la transmissió I2C

Wire.beginTransmission (Addr);

// Seleccioneu el registre de gestió d'energia

Wire.write (0x6B);

// PLL amb referència xGyro

Wire.write (0x01);

// Atura la transmissió I2C

Wire.endTransmission ();

retard (300);

}

bucle buit ()

{

dades int sense signar [6];

// Inicieu la transmissió I2C

Wire.beginTransmission (Addr);

// Selecciona el registre de dades

Wire.write (0x3B);

// Atura la transmissió I2C

Wire.endTransmission ();

// Sol·liciteu 6 bytes de dades

Wire.requestFrom (Addr, 6);

// Llegiu 6 bytes de dades

if (Wire.available () == 6)

{

dades [0] = Wire.read ();

dades [1] = Wire.read ();

dades [2] = Wire.read ();

dades [3] = Wire.read ();

dades [4] = Wire.read ();

dades [5] = Wire.read ();

}

// Converteix les dades

int xAccl = data [0] * 256 + data [1];

int yAccl = data [2] * 256 + data [3];

int zAccl = data [4] * 256 + data [5];

// Inicieu la transmissió I2C

Wire.beginTransmission (Addr);

// Selecciona el registre de dades

Wire.write (0x43);

// Atura la transmissió I2C

Wire.endTransmission ();

// Sol·liciteu 6 bytes de dades

Wire.requestFrom (Addr, 6);

// Llegiu 6 bytes de dades

if (Wire.available () == 6)

{

dades [0] = Wire.read ();

dades [1] = Wire.read ();

dades [2] = Wire.read ();

dades [3] = Wire.read ();

dades [4] = Wire.read ();

dades [5] = Wire.read ();

}

// Converteix les dades

int xGyro = data [0] * 256 + data [1];

int yGyro = data [2] * 256 + data [3];

int zGyro = data [4] * 256 + data [5];

// Sortida de dades al monitor sèrie

Serial.print ("Acceleració a l'eix X:");

Serial.println (xAccl);

Serial.print ("Acceleració a l'eix Y:");

Serial.println (yAccl);

Serial.print ("Acceleració a l'eix Z:");

Serial.println (zAccl);

Serial.print ("Eix X de rotació:");

Serial.println (xGyro);

Serial.print ("Eix Y de rotació:");

Serial.println (yGyro);

Serial.print ("Eix Z de rotació:");

Serial.println (zGyro);

retard (500);

}

A la biblioteca de cables, s’utilitzen Wire.write () i Wire.read () per escriure les ordres i llegir la sortida del sensor.

Serial.print () i Serial.println () s’utilitzen per mostrar la sortida del sensor al monitor sèrie de l’IDE Arduino.

La sortida del sensor es mostra a la imatge superior.

Pas 4: aplicacions:

Aplicacions
Aplicacions

MPU-6000 és un sensor de seguiment de moviment que troba la seva aplicació a la interfície de moviment de telèfons intel·ligents i tauletes. Als telèfons intel·ligents, aquests sensors es poden utilitzar en aplicacions com ara ordres gestuals per a aplicacions i control de telèfons, jocs millorats, realitat augmentada, captura i visualització de fotos panoràmiques i navegació per a vianants i vehicles. La tecnologia MotionTracking pot convertir telèfons i tauletes en potents dispositius intel·ligents en 3D que es poden utilitzar en aplicacions que van des de la vigilància de la salut i la forma física fins als serveis basats en la ubicació.

Recomanat: